

Blood 142 (2023) 5318-5319

The 65th ASH Annual Meeting Abstracts

ONLINE PUBLICATION ONLY

114.SICKLE CELL DISEASE, SICKLE CELL TRAIT AND OTHER HEMOGLOBINOPATHIES, EXCLUDING THALASSEMIAS: CLINICAL AND EPIDEMIOLOGICAL

A Comprehensive Echocardiographic Portrait of Adult Sickle Cell Disease Patients in the Modern Era

Kok Hoe Chan, MD¹, Zean Liao², Modupe Idowu, MD³

- ¹ Division of Hematology/Oncology, Department of Internal Medicine, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX
- ²McGovern Medical School at UTHealth Houston, Houston, TX
- ³Department of Internal Medicine, Division of Hematology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX

Background

Cardiovascular complications, especially pulmonary hypertension, are a known cause of mortality in patients with sickle cell disease (SCD). With advances in medicine and the introduction of various disease-modifying medications, the incidence and prevalence of cardiovascular complications are poorly documented.

To determine rates of cardiovascular complications in patients with SCD in the modern era of disease-modifying medications in a single center.

Method

We performed a retrospective observational single-center study of patients with SCD: all genotyped and \geq 16 years old who had a recent echocardiogram performed during the study period of 2019-2023. Demographics, echocardiogram results, and laboratory findings were collected and analyzed. Descriptive statistics are presented in percentages, medians, and interguartile ranges. An unpaired Student's t-test and Fisher's exact test were used to determine, where appropriate, the level of significant differences among continuous and categorical variables, respectively, with p value < 0.05 considered statistically significant. Data was analyzed using GraphPad Prism version 9.0.2.

Results

As of June 2023, 80 patients (38 male and 42 female, median age 30 years) had undergone a routine transthoracic echocardiogram. Sixty-five patients had the HbSS genotype, 8 HbSC, and 7 HbSB null. Sixty-one patients had received at least one treatment, and 19 (24%) were on concurrent therapy. Hydroxyurea was the common SCD-modifying therapy that the patients received (51 patients), followed by L-glutamine and voxelotor (11 each) and crizanlizumab (9 patients).

In total, 56 (70%) patients had at least one cardiac abnormality. The most common cardiac abnormality was left atrial dilatation (41%), followed by left ventricular hypertrophy (33%), right atrial dilation (24%), and left ventricular dilatation (23%). Pulmonary hypertension was present in 30 (38%) patients with tricuspid regurgitation velocity (TRV) ≥2.5 msec (Table 1).

The cohort of patients with pulmonary hypertension tended to be older (median age 31 years, p=0.0357), have a higher creatinine level (median 0.8, p=0.0414), and have coexisting echocardiographic abnormalities such as left atrial dilatation (70% vs. 24%, p<0.0001) or right atrial dilatation (40% vs. 14%, p=0.0136) than SCD patients without pulmonary hypertension (Table 2).

Conclusion

We present a comprehensive echocardiographic assessment of patients with SCD. Despite advances in the treatment of SCD, there remains a high prevalence of cardiac involvement in SCD patients. We found out that 70% of the patients we reviewed had at least one cardiac abnormality on echocardiography. Left atrial dilatation and left ventricular hypertrophy were the most common cardiac abnormalities noted. Pulmonary hypertension was observed in 37.5% of patients with co-existing right and left atrial enlargement. Larger studies are needed to corroborate these findings.

Disclosures Idowu: Global Blood Therapeutics: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Forma Therapeutics: Research Funding; Novartis: Consultancy,

ONLINE PUBLICATION ONLY Session 114

Research Funding; Novo Nordisk: Consultancy, Research Funding; Bluebird Bio: Consultancy; Pfizer: Consultancy, Research Funding, Speakers Bureau; Alexion: Research Funding; Vertex: Consultancy; Agios Pharmaceuticals, Inc.: Research Funding.

Table 1: Demographic and clinical characteristics of the study cohort (n = 80).

Medium age, years (IQR)	30 (24-37)	
Sex	72 33	
Male	38 (47.5)	
Female	42 (52.5)	
Genotype		
HbSS	65 (81.3)	
HbSC.	8 (10.0)	
HbS-β thalassemia	7 (8.9)	
History		
Hemochromatosis	21 (26.3)	
Psychiatric disorders	16 (20.0)	
Venous thromboembolism	13 (16.3)	
CVA	6 (7.5)	
Retinopathy	5 (6.3)	
Leg ulcers	3 (3.8)	
Treatment		
Received at least 1 treatment	61 (76.3)	
Concurrent therapy	19 (23.8)	
Hydroxyurea therapy	51 (63.8)	
L-glutamate therapy	11 (13.8)	
Voxelotor therapy	11 (13.8)	
Crizanlizumab therapy	9 (11.3)	
Laboratory data		
BNP, pg/mL (IQR)	40 (17-118)	
Urine protein/creatinine ratio, mg/g (IQR)	149.5 (87.5-333.7	
Hemoglobin, mg/dL (IQR)	8.8 (7.8-9.98)	
LDH, unit/L (IQR)	351 (257.3-465)	
Total bilirubin, IU/L (IQR)	2 (1.16-3.8)	
Creatinine, mg/dL (IQR)	0.69 (0.54-0.84)	
Echocardiographic features	22/10/20/2012	
Left ventricle ejection fraction, % (IQR)	60 (55-61.7)	
TRV, m/sec (IQR)	2.4 (2.12-2.7)	
Right ventricular systolic pressure (RVSP), mmHg (IQR)	28 (22-33.25)	
Left atrial dilatation	33 (41.3)	
Left ventricle dilatation	18 (22.5)	
Left ventricle hypertrophy	26 (32.5)	
Right atrial dilatation	19 (23.8)	
Pulmonary hypertension with TRV >2.5	30 (37.5)	
At least one echocardiographic abnormality	56 (70)	

Note. Data are no. (%) unless otherwise indicated.4

Table 2: Patients with versus without pulmonary hypertension.

	TRV ≥2.5, n=30	TRV <2.5, n=50	p-value
Medium age, years (IQR)	31 (24.8-44.8)	29 (23.8-34.3)	0.0357
Sex			
Male	15 (50)	23 (46)	0.8185
Female	15 (50)	27 54)	70 TH TO THE TO
Genotype	CHENNICH	A	670,8936
HbSS	23 (77)	42 (84)	0.5552
HbS-β thalassemia	4 (13)	3 (6)	
HbSC	3 (10)	5 (10)	
History	0.0000000000		2000000
Hemochromatosis	10 (33)	11 (22)	0.3011
Psychiatry disorders	3 (10)	13 (26)	0.1471
Venous thromboembolism	7 (23)	6 (12)	0.2188
CVA	1(3)	5 (10)	0.4018
Retinopathy	4 (13)	1(2)	0.0629
Leg ulcers	2 (7)	1(2)	0.5527
Treatment	250	2 7 (24)	
Received at least 1 treatment	24 (80)	37 (74)	0.5982
Concurrent therapy	8 (27)	11 (22)	0.7868
Hydroxyurea therapy	20 (67)	31 (62)	0.8110
L-glutamate therapy	2 (7)	7 (14)	0.4714
Voxelator therapy	5 (16)	6 (12)	0.7387
Crizanlizumab therapy	6 (20)	5 (10)	0.3146
Laboratory data	13000000		
BNP, pg/mL (IQR)	59 (22.3-173)	29 (16-106.5)	0.3356
Urine protein/creatinine ratio, mg/g (IQR)	129 (98.8-50.4)	156.5 (83.3-256.5)	0.3429
Hemoglobin, mg/dL (IQR)	8.4 (7.4-9.9)	9.1 (7.9-10.1)	0.3305
LDH, unit/L (IQR)	357.5 (265.6-464.3)	339 (253.5-479.3)	0.8987
Total bilirubin, IU/L (IQR)	1.8 (0.88-3.35)	2.1 (1.4-3.4)	0.9496
Creatinine, mg/dL (IQR)	0.8 (0.57-0.90)	0.6 (0.5-0.8)	0.0414
Echocardiographic features		1	
Left ventricle ejection fraction, % (IOR)	59 (55-60.5)	60 (55-61.9)	0.2248
PASP/RVSP, mmHg (IQR)	34.5 (29-40)	22 (17.4-26)	< 0.0001
Left atrial dilatation	21 (70)	12 (24)	< 0.0001
Left ventricle dilatation	10 (33)	8 (16)	0.0981
Left ventricle hypertrophy	11 (37)	15 (30)	0.6243
Right atrial dilatation	12 (40)	7 (14)	0.0136

Note. Data are no. (%) unless otherwise indicated.

Figure 1

https://doi.org/10.1182/blood-2023-182488